Adiabatic limits of anti-self-dual connections on collapsed $K3$ surfaces

نویسندگان

چکیده

We prove a convergence result for family of Yang–Mills connections over an elliptic $K3$ surface $M$ as the fibers collapse. In particular, assume is projective, admits section, and has singular Kodaira type $I_1$ $II$. Let $\Xi_{t_k}$ be sequence $SU(n)$ on principal bundle $M$, that are anti-self-dual with respect to Ricci flat metrics collapsing $M$. Given certain non-degeneracy assumptions spectral covers induced by $\overline{\partial}_{\Xi_{t_k}}$, we show away from finite number fibers, curvature $F_{\Xi_{t_k}}$ locally bounded in $C^0$, converge along subsequence (and modulo unitary gauge change) $L^p_1$ limiting connection $\Xi_0$, restriction $\Xi_0$ any fiber $C^{1,\alpha}$ equivalent holomorphic structure determined covers. Additionally, relate converging special Lagrangian multi-sections mirror HyperKahler structure, addressing conjecture Fukaya this setting.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Anti-self-dual Bihermitian Structures on Inoue Surfaces

In this article we show that any hyperbolic Inoue surface (also called InoueHirzebruch surface of even type) admits anti-self-dual bihermitian structures. The same result holds for any of its small deformations as far as its anti-canonical system is nonempty. Similar results are obtained for parabolic Inoue surfaces. Our method also yields a family of anti-self-dual hermitian metrics on any hal...

متن کامل

Self Rational Maps of K3 Surfaces

We prove that a very general projective K3 surface does not admit a dominant self rational map of degree at least two.

متن کامل

On Elliptic K3 Surfaces

We make a complete list of all possible ADE-types of singular fibers of complex elliptic K3 surfaces and the torsion parts of their MordellWeil groups.

متن کامل

On Normal K3 Surfaces

We determine all possible configurations of rational double points on complex normal algebraic K3 surfaces, and on normal supersingular K3 surfaces in characteristic p > 19.

متن کامل

Nikulin Involutions on K3 Surfaces

We study the maps induced on cohomology by a Nikulin (i.e. a symplectic) involution on a K3 surface. We parametrize the eleven dimensional irreducible components of the moduli space of algebraic K3 surfaces with a Nikulin involution and we give examples of the general K3 surface in various components. We conclude with some remarks on MorrisonNikulin involutions, these are Nikulin involutions wh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Differential Geometry

سال: 2021

ISSN: ['1945-743X', '0022-040X']

DOI: https://doi.org/10.4310/jdg/1622743140